Generative AI Governance: Using the NIST Framework to Build Trust, Reduce Risk, and Lead Secure AI Adoption
Generative AI has moved faster than nearly any technology security leaders have dealt with. Tools that can generate text, code, images, and data insights are now embedded into productivity platforms, security tooling, development workflows, and business operations—often before security teams are formally involved. For CISOs, this creates a familiar but amplified challenge: innovation is happening faster than governance, and unmanaged generative AI introduces material risk across confidentiality, integrity, availability, compliance, and trust. For aspiring information security professionals, AI governance represents a growing and valuable discipline where strategic thinking matters just as much as technical depth. The good news? We don’t need to invent governance from scratch. NIST’s AI Risk Management Framework (AI RMF) provides a practical, flexible structure that security leaders can use today to govern generative AI responsibly and defensibly. Why Generative AI Governance Matt...